BARISAN DAN DERET ARITMATIKA
A. Barisan Dan Deretan Aritmatika
barisan aritmatika adalah suatu baris di mana nilai pada masing-masing sukunya diperoleh dari suku sebelumnya lewat penjumlahan atau pengurangan dengan suatu bilangan b.
Deret aritmatika adalah suatu penjumlahan antar suku-suku dari sebuah barisan aritmatika
Rumus Barisan Dan Deretan Aritmatika
~Rumus Barisan Aritmatika
Usai membahas pengertian singkat dari barisan dan deret aritmatika, pahami uraian tentang rumusnya berikut ini,
Rumus untuk menentukan suku ke-n dari barisan aritmetika:
Un = a + (n – 1)b atau Un = Un-1 + b
Selain mencari rumus suku ke-n, adapun rumus yang digunakan untuk mencari nilai tengah dari sebuah barisan aritmatika, yakni:
Ut = ½ (a + Un)
Keterangan:
Un = suku ke-n
a = U1
Un-1 = suku sebelum suku ke-n
b = beda.
~Rumus Deretan Aritmatika
berikut rumus deret aritmatika, yakni:
Sn = n/2 (a + Un) = n/2(2a + (n – 1)b)
Berdasarkan rumus tersebut, dapat ditemukan suku ke-n dengan cara berikut ini, yaitu:
Un = Sn – Sn-1
Keterangan:
Un = suku ke-n
a = U1
Un-1 = suku sebelum suku ke-n
b = beda
Contoh Soal Barisan Dan Deretan Aritmatika
~Soal Barisan Aritmatika
Seorang pegawai kecil menerima gaji tahun pertama sebesar Rp3.000.000,00. Setiap tahun gaji tersebut naik Rp500.000,00. Jumlah uang yang diterima pegawai tersebut selama sepuluh tahun adalah...
Diketahui:
Gaji pertama = a = Rp3.000.000,00
Kenaikan gaji tiap tahun = b = Rp.500.000
Gaji tahun kesepuluh = U10
Jumlah gaji selama sepuluh tahun = S10
Jawaban:
Un = a + (n - 1)b
U10 = 3.000.000 + (10 - 1)500.000
= 3.000.000 + (9 × 500.000)
= 3.000.000 + 4.500.000
= 7.500.000
~Soal Deretan Aritmatika
Diketahui suatu deret aritmetika dengan suku pertamanya adalah 10 dan suku ke-enam adalah 20. Lalu, tentukan:
Beda deret aritmetika tersebut.
Tuliskan deret aritmetika tersebut.
Jumlah enam suku pertama deret aritmetika tersebut.
Jawaban:
Beda deret aritmatika tersebut:
Un = a+(n-1)b
U6= a+(6-1) b
20= 10+(5)b
b= 10/5 = 2
Jadi, beda deret aritmatika tersebut adalah 2.
Deret aritmatikanya adalah:
10+12+14+16+18+20+…+Un
Jumlah suku ke-enam, S6 adalah:
Sn =n/2 (2a+(n-1) b)
S6= 6/2 (2.10+(6-1) 2)
=3(20+10)
=90
Jadi, jumlah Suku ke-enam deret tersebut adalah 90.
B. Barisan Dan Deret Geometri
Barisan geometri adalah pola yang memiliki pengali atau rasio yang tetap untuk setiap 2 suku yang berdekatan. Rasio pada barisan geometri biasa disimbolkan dengan r. Barisan geometri juga biasa disebut sebagai barisan ukur.
Deret geometri itu bentuk penjumlahan dari barisan geometri.
Rumus Barisan Dan Deret Geometri
Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat dihitung dengan rumus berikut.
Sedangkan, deret geometri adalah penjumlahan suku-suku dari barisan geometri.
Penjumlahan dari suku-suku pertama sampai suku ke-n barisan geometri dapat dihitung dengan rumus berikut.
dengan syarat r < 1
atau
dengan syarat r > 1
Soal Barisan Dan Deretan Geometri
Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah…
Pembahasan:
Diketahui: a = 3
Ditanya:Jawab:
Sebelum kita mencari nilai dari , kita akan mencari nilai r terlebih dahulu.
Ingat kembali bahwa sehingga dapat ditulis menjadi
Sehingga,
Jadi, suku ke-7 deret tersebut adalah 192.
Komentar
Posting Komentar