LIMIT

a. limit fungsi aljabar

Pengertian Limit Fungsi

Limit itu suatu batas yang menggunakan konsep pendekatan fungsi. Jadi, bisa dibilang limit adalah nilai yang didekati fungsi saat suatu titik mendekati nilai tertentu. Oke, dari kasus di atas tadi, kan ada bilangan yang mendekati 2 dari kiri dan kanan. Makanya, limit itu terdiri dari limit kiri dan limit kanan. Penulisannya juga beda loh, jadi(dibaca: x mendekati 2 dari kiri) dan untuk (bilangan yang mendekati 2 dari kanan

Cara Menghitung Nilai X Mendekati Satu Titik

1. Strategi Substitusi

Tahapan pertama untuk menyelesaikan suatu limit di satu titik (nilai berhingga) adalah substitusi langsung. Jika dari hasil substitusi langsung tidak diperoleh nilai dengan bentuk tak tentu seperti di bawah ini, maka nilai tersebut adalah menunjukan nilai dari limit yang bersangkutan.  

Contoh soal:

2. Strategi Faktorisasi

Apabila hasil substitusi langsung diperoleh nilai bentuk tak tentu, maka kita harus memfaktorkannya sehingga bentuknya menjadi bukan bentuk tak tentu, kemudian kita lanjutkan menggunakan strategi substitusi langsung sehingga diperoleh hasilnya.

Contoh soal: 

3. Strategi Mengalikan dengan Bentuk Sekawan

Strategi mengalikan dengan bentuk sekawan dilakukan pada limit berbentuk irasional. Hal ini dilakukan jika sebelumnya kita menggunakan strategi substitusi langsung dan strategi faktorisasi, hasil keduanya adalah bentuk tak tentu. Setelah perkalian itu disederhanakan, maka kita menggunakan strategi substitusi langsung lagi, sehingga diperoleh hasilnya. 

Contoh soal:


B.Teorema Limit

Limit dalam bahasa umum bermakna batas. 

Definisi dari limit ini menyatakan bahwa suatu fungsi f(x) akan mendekati nilai tertentu jika x mendekati nilai tertentu. 

Pendekatan ini terbatas antara dua bilangan positif yang sangat kecil yang disebut sebagai epsilon dan delta. 


Hubungan ke-2 bilangan positif kecil ini terangkum dalam definisi limit.

Limit Matematika

Limit 0/0

Bentuk 0/0 kemungkinan timbul dalam

Limit 0

ketika kita menemukan bentuk seperti itu coba untuk sederhanakan fungsi tersebut. 

Jika itu bentuk persamaan kuadrat kita bisa coba memfaktorkan atau dengan cara asosiasi, dan jangan lupa aturan a2-b2 = (a+b) (a-b). 
Berikut adalah contohnya :

Contoh
Contoh Limit 0

Limit ∞/∞

Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti :

Limit Tak Hingga
Contoh
Contoh Limit Tak Hingga

Rumus cepat limit bentuk  ∞/∞

Rumus Cepat Limit Tak Hingga
  • Jika m<n maka L = 0
  • Jika m=n maka L = a/p
  • Jika m>n maka L = ∞

Limit (∞-∞)

Bentuk (∞-∞) sering sekali muncul pada saat ujian nasional. 

Bentuk soalnya sangat beragam. Namun, penyelesaiannya tidak jauh dari penyederhanaan. 

Contoh
Contoh Limit Tak Hingga 2

Jika disubstitusikan x -> 1 maka bentuknya akan mmenjadi (∞-∞). 

Dan untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi

Contoh Limit Tak Hingga 3

C.Rumus Cepat limit tak hingga

Rumus cepat mengerjakan limit tak hingga yang pertama dapat digunakan untuk bentuk soal limit tak hingga pada bentuk pecahan. 

Untuk memperoleh nilai limit tak hingga bentuk pecahan kita hanya perlu memperhatikan pangkat tertinggi dari masing-masing pembilang dan penyebut.


Ada 3 kemungkinan yang dapat saja terjadi. 

  1. Pertama, pangkat tertinggi pembilang lebih kecil dari pangkat tertinggi penyebut. 
  2. Kedua, pangkat tertinggi pembilang sama dengan pangkat tertinggi penyebut. 
  3. Ketiga, pangkat tertinggi pembilang lebih tinggi dari pangkat tertinggi penyebut. 

Rumus ke-3 nilai limit tak terhingga bentuk pecahan tersebut dapat dilihat pada persamaan dibawah ini.

Rumus Cepat Limit Tak Hingga 3
Contoh
Contoh Rumus Cepat Limit Tak Hingga 3

Nilai pangkat tertinggi pada pembilang adalah 3. Nilai pangkat tertinggi penyebut adalah 2 (m>n). Jadi, nilai limitnya adalah ∞.


Daftar Pustaka





 


Komentar

Postingan populer dari blog ini